Acnode - significado y definición. Qué es Acnode
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Acnode - definición

ISOLATED POINT IN THE SOLUTION SET OF A POLYNOMIAL EQUATION IN TWO REAL VARIABLES. EQUIVALENT TERMS ARE "ISOLATED POINT OR HERMIT POINT"

Acnode         
·noun An isolated point not upon a curve, but whose coordinates satisfy the equation of the curve so that it is considered as belonging to the curve.

Wikipedia

Acnode

An acnode is an isolated point in the solution set of a polynomial equation in two real variables. Equivalent terms are isolated point and hermit point.

For example the equation

f ( x , y ) = y 2 + x 2 x 3 = 0 {\displaystyle f(x,y)=y^{2}+x^{2}-x^{3}=0}

has an acnode at the origin, because it is equivalent to

y 2 = x 2 ( x 1 ) {\displaystyle y^{2}=x^{2}(x-1)}

and x 2 ( x 1 ) {\displaystyle x^{2}(x-1)} is non-negative only when x {\displaystyle x} ≥ 1 or x = 0 {\displaystyle x=0} . Thus, over the real numbers the equation has no solutions for x < 1 {\displaystyle x<1} except for (0, 0).

In contrast, over the complex numbers the origin is not isolated since square roots of negative real numbers exist. In fact, the complex solution set of a polynomial equation in two complex variables can never have an isolated point.

An acnode is a critical point, or singularity, of the defining polynomial function, in the sense that both partial derivatives f x {\displaystyle \partial f \over \partial x} and f y {\displaystyle \partial f \over \partial y} vanish. Further the Hessian matrix of second derivatives will be positive definite or negative definite, since the function must have a local minimum or a local maximum at the singularity.